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Abstract

We consider the use of preconditioning methods to accelerate the convergence to a steady
state for both the incompressible and compressible fluid dynamic equations, We also consider
the relation between them for both the continuous problem and the finite difference approxi-
mation. The analysis relies on the inviscid equations. The preconditioning consists of a matrix
multiplying the time derivatives. Hence, the steady state of the preconditioned system is the
same as the steady state of the original system. For finite difierence methods the preconditioning
can change and improve the steady state solutions. An application to flow around an airfoil is
presented.
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1 Introduction

Seymour Parter has considered preconditioning methods for numerical approximations to elliptic
partial differential equations. As an extension of his ideas we shall consider similar techniques for the
fluid dynamic equations. Much effort has been expended to solve the compressible steady state fluid
equations for a large range of Mach numbers. A standard way of solving the steady state equations
is to march the time dependent equations until a steady state is reached. Since the transient is
not of any interest one can use acceleration techniques which might destroy the time accuracy but
enables one to reach the steady state faster. Such methods can be considered as preconditionings
to accelerate the convergence to a steady state. For the incompresible equations the continuity
equation does not contain any time derivatives. To overcome this difficulty, Chorin [2] added an
artificial time derivative of the pressure to the continuity equation together with a multiplicative
variable, 0 . With this artificial term the resultant scheme is a symmetric hyperbolic system for the
inviscid terms. Thus, the system is well posed and and numerical method for hyperbolic systems
can be used to advance this system in time.. The free parameter j3 is then chosen to reach the steady
state quickly. Later Turkel ([151, [16]) extended this concept by adding a pressure time derivative
also to the momentum equations. The resulting system after preconditioning is no longer symmetric
but can be symmetrized by a change of variables.

It is well known, that it is difficult to solve the compressible eqi,,,tions for low Mach numbers.
For an explicit scheme this is easily seen by inspecting the time steps. For stability, the time step
must be chosen inversely proportional to the largest eigenvalue of the system which, for slow flows,
is approximately the speed of sound, c. However, other waves are convected at the fluid speed, u ,
which is much slower. Hence, these waves don't change very much over a time step. Thus, thousands
of time steps may be required to reach a steidy state. Should one try a multigrid acceleration one
finds that the same disparity in wave speeds s.tJws down the multigrid acceleration. With an implicit
method an ADI factorization is usually used so that one can easily invert the implicit factors. The
use of ADI introduces factorization errors which again slows down the convergence rate when there
are wave speeds of very different magnitudes [12] .

For small Mach numbers it can be shown ([51,(7],[9]) that the incompressible equations ap-
proximate the compressible equations. Hence, one needs to justify the computational use of the
compressible equations for low Mach flows. We present several reasons why one would still use the
compressible equations even though the Mach number of the flow is small.

e There are many highly efficient compressible codes available that could be used for such
problems especially in complicated geometries.

* For low speed aerodynamic problems at high angle of attack most of the of the flow consists
of a low Mach number flow. However, there are localized regions containing shocks.

* In many problems thermal effects are important and the energy equation is coupled to the
other equations. Then, the compressible equations must be used even for low Mach number
flows.

Therefore, one wants to change the transient nature of the system to remove this disparity of the
wave speeds. Based on an analogy with conjugate gradient methods such methods were called (15]
preconditioned methods since the object is to reduce the condition number of the matrix. Another
approach, in one dimension, is to diagonalize the matrix of the inviscid term. One can then use a
different time step for each equation. or wave. Upon returning to the original variables one finds
that this is equivalent to multiplying the time derivatives by a matrix. Hence, this same approach
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is named characteristic time stepping in [17]. In intltidimensions one can no longer completely
decouple the waves and so the characteristic time stepping is only an approximation.

Thus, for both the incompressible and compressible equations we will consider systems of the
form

W, + fX + g9 = 0.

This system is written in conservation form though for some applications this is not necessary. Our
analysis will be based on the linearized equations so that the conservation form does not appear
in the analysis though it does appear in the final numerical approximation. This system is now

replaced by

P-'wt + f. + gV = 0,

or in linearized form

P-'w, + Aw. + 2u; =- 0, ("

with A and B constant matrices.

In order for this system to be equivalent to the original system, in the steady state, we demand
that P-1 have an inverse. This only need be true in the flow regime under consideration. We shall
see later that frequently P is singular at stagnation points and also along sonic lines. Thus, we
will temporarily consider strictly subsonic flow without a stagnation point. For transonic flow it is
necessary to smooth out the singularity in a neighborhood of the sonic line. We also assume that
the jacobian matrices A = f and Ba= R are simultaneously symmetrizable. In terms of the
'symmetrizing' variables we also demand that P be positive definite. We shall show later, in detail,
that it does not matter which set of dependent variables are used to develop the preconditioner.

One can transform between any two sets of variables. Popular choices are two out of density,
pressure, enthalpy, entropy or temperature in addition to the velocity components. Thus, when
we are finished we will analyze a system which is similar to (1), where the matrices A and B are

symmetric and P is both symmetric and positive definite. Such systems are known as symmetric
hyperbolic systems. One can then multiply this system ty w and integrate by parts to get estimates
for the integral of w, , i.e. energy estimates. These estimates can then be used to show that the
system is well posed (see e.g. [5]). We stress that if P is not positive then we may change the

physics of the problem. For example, if P = -I then we have reversed the time direction and must
therefore change all the boundary conditions. Hence, to be sure that the system is well posed with

the original type of boundary conditions we shall only consider the symmetric hyperbolic system.
With these assumptions the steady state solutions of the two systems are the same. Assuming

the steady state has a unique solution, it does not matter which system we march to a steady state.
We shall later see that for the finite difference approximations the steady state solutions are not
necessarily the same and usually the preconditioned system leads to a better behaved steady state.

2 Incompressible equations

We first consider the incompressible inviscid equations in primitive variables.

tlx+V = 0U , + VY• =

Ut + Uuz + VUV + P, = 0

Vt + UV, + 7V1Y + pA = 0
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We consider generalizations of Chorin's pseudo-compressibility method [2]. Using the precondition-
ing suggested in [15] (with a = 1) we have

1
7-'Pt + U= + VI = 0

U(2

T-Pt+Ut+UU'+Vu V +PiP = 0

T-2pt + vt + UV' + vvV + P11 =0

or in conservation form

1
2-Pt u + vS, = 0

2u U U
T2 +Pt + + P). + (UV) = 0

2v
T2vPt + vt + (UV). + (V2 + A) = 0

We can also write (2) in matrix form using

1/g2 0 0' ~
P-1 U/032 1 P= -u 1 0

V/#2 0 1 -v 0 1
P= 2 0 1

i.e.

( /#2 0 0 0 0 0 (3)
j/ 0) 1 0 (+( ( ') U = (

Multiplying by P we rewrite this as

wt + PAwS + PBwy = 0.

We also define

D=wiA+ w 2B -1 <wW 2 < 1

where wI, w2 are the Fourier transform variables in the x and y directions respectively. The speeds
of the waves are now governed by the roots of det(Al - PAw1 - PBW2) = 0 or equivalently
det(AP-1 - Awl - BW2 ) = 0. Let

q = w, + VW2.

Then the eigenvalues of PD are

do =q (4)

d+ ±0f

3



and so the 'acoustic' speed is isotropic.
The spatial derivatives involve symmetric matrices, i.e. D is a symmetric matrix but P is not

symmetric. Thus, while the original system was symmetric hyperbolic the preconditioned system
is no longer symmetric. In [15] it is shown that as long as

/32 > (u 2 + V2 )

then the equations can be symmetrized. On the other hand the eigenvalues are most equabzed if
-2 = (u2 + v2) [151. Hence, we wish to choose/32 0'iightly larger than u 2 + v2 . However, numerous

calculations verify, that in geiieral, a constant /3 is the best for the convergence rate. The reapsons
for this are not clear.

We wish to stress that j has the dimensions of a speod. Therefore, /3 cannot be a universal
constant. There are papers that claim that /3 = 1 or /3 = 2.5 are optimal. Such claims cannot lie
true in general. It is simple to see that if one nondimensionalzes the equation then /3 gets divided
by a reference velocity. Hence, the optimal 'constant' /3 depends on the dimensionalization of the
problem and in particular depends on the inflow conditions. In many calculations the inflow mass
flux is equal to I or else p + (u2 + v2)/2 = 1. Such conditions will give an optimal /3 close to one.
However, if one chooses the incoming mass flux as ten then the optimal /3 will be larger.

We next define the Bernoulli function

H = p + (u2 + v2 )/2.

Bernoulli's theorem states that for steady inviscid flow H is constant along streamlines. We now
multiply the second equation of (2) by u and the third equation of (2) by v and add these two
equations. If /2 = u2 + v2, the result is

Ht + uHR + vH! = 0. (5)

Thus, by altering the time dependence of the equrations we have constructed a new equation in
which H is convected along streamlines. Furthermore, if H is a uniform constant both initially and
at inflow then H will remain constant for all time. On the numerical level this will usually not be
true because of the introduction of an artificial viscosity or because of upwinding. For viscous flow,
(5) is replaced by

Ht + uH• + vtH, = -(uAu + vav)
Re

We note that these relationships for H follow from the momentum equations and do not depend
on the form of the continuity equation. Hence, we consider the following generalization of (2)

11 Pt + at + Tt, + V1, = 0
au

"2Pt+Ut+uz +VUv+Px = 0

av
"- ePt+Vt+UVi+Vv +p1  = 0

where, a is a free parameter. The eigcavalues of P1) are independent of the parameter a and are
given by (4). For a = 0, o = I we recover our original scheme. For a = -I the time derivative of
the pressure no longer appears in the continuity equation. For general /I wo have
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(a +) au av
P- = Ou /2 0

av 0 #2

j32 -au -av
1 actv2 actuy

p -au +a- ---- -
-•v --y- 1+ a - -,O-T

where d = 1+ a - a 2 - and we require that d > 0. If/P2 = u2 + v2 and a = I then

/ 2 + V2  -au -av

- 1+ au2  auu2+t 2  
t&+tJ I.

-V 1 + /,G•

In [16] an analogy to the symmetric preconditioning of van Leer, Lee and Roe was constructed for
the incompressible equations. If we choose a = 1,a = 1 we get this preconditioning of van Leer
et.al., i.e. P is symmetric.

These examples show that the preconditioning is not unique. If fact, since the determinant of the
transpose of a matrix is equal to the determinant of the original matrix it follows that the transpose
of P is also a preconditioner with the same eigenvalues for the preconditioned system. In general,
these various systems will have similar eigenvalues but different eigenvectors for the preconditioned
system. Numerous calculations show that the system given by P in (2) is more -obust and converges
faster than that with the transpose preconditioner. This shows that it is not sufficient to consider
just the eigenvalues but that the eigenvectors are also of importance. However, even when P is
symmetric PD is not symmetric and so the eigenvectors of the preconditioned system do not form
an orthogona4 basis.

We next examine some general form that the preconditioner can have. For this analysis it is
easier to use streamwise coordinates as suggested in [17] and so v = 0. Let u. be some normalization
of the velocity components, then(0 U.0 0 0 U

A = U. U 0 , B = 0 0 0
0 0 U )IU. 0 0

Then the "convective" eigenvector for the non-preconditioned system is

W2 
•

The "acoustic" eigenvectors are given by

-UWI+V(-U.i)2+4u2 _________________4u2

J.W U 1LJW

U-W2 / \ U-W2 /
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We now consider preconditioners of the form( a b 0
c d 01. (ft)
0 0 1

Let D = w1A +w 2 B , wi +w2 = 1. We want the eigenvalues of PD to be a, u. ±u, This gives
us three relations for the four unknowns:

u 2
a =- -U.

2

(b + c)u, + du = 0

u2d - bcu'. = u2

The values suggested in [15] are b = 0,c = -- d = I while the values suggested in [17] are
c -,d = 2 We next present the eigenvectors of PD in terms of the elements of P. We

exclude the case w2 = O,wl = as in this case PD has a double eigenvalue u and the eigensystem
completely changes. Then the "convective" eigenvector is( ° )

W2.

The "acoustic" eigenvectors are given by
U,, 2 _ b 2.- + buw' - buw? + ? WI -6u1

I U U* ~ -O 1 _u.(a + bw,) - u.(b + c)w ,.(a + i) + u.(b + c),,

(u.&wl + u)W2  (u.bwl - u)W2

We note that the convective eigenvector is the same as before the preconditioning for the choice
b = 0. The two acoustic eigenvectors are orthogonal to each other if we choose b = 0 and c2 =
U2 U 2

U----- This is similar, but not identical, to the choice suggested in [15]. There is no way to make
the convective eigenvector normal to both acoustic eigenvectors for preconditioners of the form (6).

3 Compressible equations

The time dependent Euler equations can be written as

pt + up, + vpv + pa 2 (u v -t- vv) = 0
U + uu,+ Vuy+ p--£ = 0 (7)

P
vt + uvX + vvy + P. = 0

P

St + uS, + vSY = 0

where a is the speed of sound given by a2 = -.P
The form of this system is unchanged if we nondimensionalize the equations. From now on

we shall assume that u, v, p, p are nondimensional quantities where the dimensional variahies are

6



nondimensionalized by u.,p.,p. with p. = p.utL. Following [5) we define • = ± If the fluid is
isentropic then 

a.

and
p2Za = P (2(9 )

Hence, as t goes to zero the speed of sound, a, goes to infinity and so the first equation in (7)
reduces to u., + v. = 0.

It was pointed out in ([151, [16]) that these equations can be symmetrized by using !P as the

independent variable rather than dp. Hence, we define a new variable 0 by do - . For isentropic
flow both p and a are functions only of the density and so using (8, 9) this can be integrated

explicitly. This gives - As the Mach number goes to zero 4 tends to infinity and therefore,

Gustafsson and Stoor [5] subtract a constant and define

2

This amounts to specifying the constant in the integration of do from dp. They then prove, using
energy methods, that for the linearized equations

ak• *eOPincompreasible" ax

Since p -- 1 and using the definition of do this is equivalent to

dPcompressible " dPincompressible. (10)

We consider preconditionings that are a generalization of (3)

•-2 000 2d,2 u au 0 0 v 0 a 0
0 0 22 vl UI aI dv'pa Pa p

-a 1 0 du a U 0 0 du + 0 v 0 0 du
~01 0a.0 1 0 dv + 30 U dv 0 V 0 dv =

0 00 1 dS, /0 0 0 u dS 0 0 0 V dS

The nonpreconditioned case corresponds to /2 =a' a= 0. Let

q = wl + vW2

then the eigenvalues of PD are given by

do= q (double)

d± = 1/2 [(1 - a + l2 /a 2 )q ± ((I - a +,i 2/a 2 )2 q2 +4(1- q2/a2)f2

If we consider the special case a = 1 + 0 2 /a 2 we find that the 'acoustic' eigenvalues are given by

±= ( -
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Hence, these eigenvalues are isotropic in the limit of M going to zero. Itowever, this eigonvalue
vanishes at the sonic line and so the matrix is singular. In general if we delmand that the acoustic
eigenvalues be isotropic then we have a singularity at the sonic line where the eigenvalues cannot
be isotropic. The two ways out of this difficulty are either to smooth the formulas near the singular
line or else to give up on isotropy. This difficulty is not a property of the preconditioning just
presented but applies equally to all preconditioners.

We now consider the system (7) in conservation form.

pt + (pU)x + (pv)• = 0

(pu) + (pU 2 + p). + (PUV) =- 0

(pv)t + (PuV)z + (PV2 + P)3, = 0

E, + (pHu), + (pHv),, = 0

where

E P u2 + v'2

7-1 2

H E+p a 2  u2 + v 2
H-/ - -_- +

p 7-1 2

Note that the Bernoulli function H is not identical with H for the incompressible equations. How
ever, we again have that for steady inviscid flow H is constant along stream lines. We now pre-
condition the density and the energy equations in the following consistent manner. Let ýb be any
variable we choose. Then we consider

O, + (PU). + (PVy -= 0

(4,H)t + (pHu). + (pHv), = 0

Manipulating these equations gives

Ht + uH, + vH, = 0

i.e. the total enthalpy, H, is simply convected in time along streamlines as we obtained for H in the
incompressible case. It is interesting to observe that in the incompressible case we achieved this
by preconditioning only the momentum equations while for the compressible flow we achieve this
by preconditioning the continuity and energy equation. Of course, for isentropic flow the ,nergy
equation is not indepeihdent of the other equations and the result is not surprising.

For the finite difference equation this implies that the artificial viscosity for the continuity
equation should be based on Vb and for the energy equation on ý5H. If we choose V, = p, i.e. no
preconditioning for the continuity equation then we have the saine artificial viscosity as suggested
in [6] but with a different variable being advanced in imje. If wo choose V, = p then both the
continuity and energy equations are preconditioned.

We next present the van Leer-Lee-Roe preconditioning for general non-aligned flow in (k @du, d,. dS)
variables [171.

T M2 u/a -T-7v/a 0

-v/la ( + +l);r-• +(•+I)z¾-±r 0P_ = -v/a" 'r + l -W"V + l)• + 7-•" 0

0 0 01



r v _-M2, M < 1,
V -2 I, M_> I;

S{ -M2, M<I,

7" _M1-M -2, M>1.

At the sonic line -3 = dnd r = 0 and the preconditioning matrix becomes singular. This
preconditioning is not unique even if one only considers symmetric preconditioners. In both these
examples the preronditioner was constructed based on using (p, u, v, S) as the dependent variables.
The reason for this choice is that the matrices are symmetric which this choice. However, if
another ,,, ;ce of variables is more appropriate tht introduces no difficulties. Thus. for example
[1] recommends the use of (p, u, v, T) variables for the Navier-Stokes equations. Given two sets of
dependent variables w and W let W,, be the Jacobian matrix -3W, Then, we have dW -= WK,,dul. So
we can go between any sets of primitive variables or between prinitive variables and conservation
variables. In particular since the equations are solved in conservation variables we have several
ways of going from the primitive variable preconditioner to a conservation variable preconditioner.
Thus, the choice of variables used in constructing the preconditioner is dictated by mathematical
or physical reasoning and then the preconditioner can be transformed to any other set of variables.

9 Construct the preconditioner matrix for the conservation variables. If W are the conservative
variables and w the primitive variables then Pcosevati, = (W-, Ppr-mi1ive(W, l)Ptails
of the matrix Jacobians between various sets of variables are given in the appendix.

* We calculate the residual dW in conservative variables. We then transform dW to dw as
before. Next we multiply by P and finally transform back to conservative variables dW and
update the solution. This is algebraically equivalent to the first option but requires three
matrix multiplies instead of one. However, it offers more flexibility.

* Similar to the previous suggestion we calculate the residual dW and transform to conservative
variables dw and the multiply by P. At this stage we update the primitive variables w. We
then use the nonlinear relations to construct W from w. This approach has advantages if the
boundary conditions are given in terms of the primitive variables (p or T) and so they can
be specified exactly and not approximately.

If the residual dW is kept from the conservation form but the time derivative Wt is replaced
by the time derivative of other variables, W( this is linearly equivalent to preconditioning by
the matrix P-1 =w

19W

These methods are all equivalent for linear systems and the difference between them is mainly
one of convenience. However, we shall next see that for the difference approximation these ap-
proaches are not equivalent.

4 Difference Equations

Until now the entire analysis has been based on the partial differential equation. We now make
some remarks on important points for any numerical approximation of this system.

* For an upwind difference scheme based on a Rieniann solver this Riemann solver should be
for the preconditioned system and not the original scheme. In [3] plots are shown to illus.tratt,
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the greatly improve(] accuracy for low Mach number flows whon the, Hiemann solvr is h~oed

on the preconditioning.

* For central difference schemes therc is a need to add l an artificial viý'-osityv. Accuracv 'I
improved for low Mach number flows if the preconditionor is applied only to the physical
convective and viscous terms but not to the, artificial viscosity. Volpe f191 sIt(m thfat fhie

accuracy of the original system deterini a tcs as the Mach nuiber is reduceod. T1he uef a
matrix artificial dissipation (Q14]) should he based on the preconditioned equ ation, as in tHit
upwind difference scheme. Upwind schemes without preconditiounitg tend to have difficultiif j
with accuracy for low Mach flows [3].

Hence, both for upwind and central difference schemes the Riemaun solver or artificial viro<s.
ity should be based on P-'IPAI and not JAI. i.e. in one dimension solve w, +PJf, = (jPA n'w,: )1
. For a •calar artificial viscosity JPAJ is replaced by the spectral radius of PA or equivalent lv
the time step associated with the preconditioned matrix. This is equivalent to not multiplying
the artificial viscosity by P.

* For a central difference scheme with a scalar artificial viscosity the artificial viscosity is of
the form of a high order difference of the same quantity as is advanced in time. Thus. the
continuity equation is solved for the density and so the artificial viscosity is a difference of the
density. Similarly, for the momentum equations. For, the energy equation one can base the
artificial viscosity on the energy. Alternatively it can bee based on the total eu1thalpy which
guarantees, for inviscid flow, that the total enihalpy is constant in the steady state [6I. Whe, n
preconditioning the system one of the alternatives described above was to replace the timet
derivative of the conservative quantities with the time derivative of other variahiis. Thik.
implies that the artificial viscosity should also be changed. Thus, if the continuity equatikn
is updated for the pressure rather than the density, then the artificial viscosity should be
based on the pressure. This is physically more reasonable for low speed flow since the density
is almost constant and so will not contribute any reasonable viscosity. Furtheriuilre, using
a viscosity in the continuity equation based on the pressure mimics what was done for the
incompressible equations. This allows the low speed compressible equations to rTe)licate• 1h
results of the incompressible equations on the finite difference level. This will be, (.iscussed in
more detail in th- following sections.

e When using characteristics in the boundary conditions these should be based on the charac-
teristics of the modified system and not the physical system.

9 When using inultigrid it is better to transfer the residuals based on the precontditioned systeni
to the next grid since these residuals are more balanced than the physical re-siduals.

Preconrditioning is even more important when using multigrid than with an explicit schinie.
With the original system the. disparity of the eigenvalues greatly affects the smioothing rates
of the slow components and so slows down the multigrid niethod, [lO].

* As indicated above there are accuracy difficulies at low Mach numbers [19]. Somne of these
can be alleviated by preconditioning the dissipation terms. For very small Mach numibers
there is also a difficulty with roundoff errors as - -- -c. Several people hav, suggosid

subtracting out a constant pressure from the dynamic pressure. A more detailed analysis
[4] suggests replacing the pressure p by ý wherc p = and , is a representaiive Maclh
numniber.
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We conclude from the above remarks that the steadv state solution of the preconiditioned sv,-

tern may be different from that of the physical system. Thus, on the finite differencI, leveI Iew
preconditioning can improve the accuracy as well as the convergence rate,.

In the previous section we stated that it is not important if one updates a differeniit ý.,t of varil
ables or else uses the conservation variables and compensates with preconditio itng ji a ma, ris
multipfication. However, aumerically for very small Mach numbers the entries in the pr'co(niditii-
ing matrix can become very large or small. Hence, it can be advantageous to update the prts.,ure
or temperature directly rather than using a matrix multiply for preconditioning.

5 Convergence

We have previously quoted several papers ([51,[71. [91), that prov(e the convergence of !he coipre,',r-
ible equations to the incompressible equations, for isentropic flow. as the Mach numtiber goes to

zero. For nonisentropic flow there are no formal proofs. However, it is clear that for viscous flows
that the boundary condition on the temperature, adiabatic or isothermal is very important, see

[Ill.
AlU these results refer to the time dependent physical equations. Once preconditioning is in-r,-

diiced time accuracy is lost and one can only discuss convergence of the steady state solutions. In

this case one would hope that the time dependent preconditioned couipressible equations converge
to some time dependent preconditioning of the incompressible equations. In addition, one would
also want this to be true on the numerical level. Thus, one would want to solve the preconditioned
compressible equations by some numerical technique, on a fixed mesh and compare that with the
solution of the incompressible equations on the same mesh. Mathematically. we have two limit pro-
cesses occuring: the Mach number going to zero and the mesh size going to zero. These two lintits
need not commute. If one first converges the mesh size and then the Mach number it is e(quivalent
to the convergence proofs for the analytic case. The more interesting problem is to converge the
Mach number and then converge the mesh, i.e. we ust- a fix mesh as the Mach number is reduced.

In particular this requires a careful study of the viscosities introduced by the scheme. We first
consider an upwinding scheme. For the compressible case we have already noted that the Riemann
solver should depend on the preconditioned problem. One would then need to show that this RiP-
mann problem converges to a Riemann problem for some preconditioning of the incompressible
equations. We next consider a central difference scheme with a scalar viscosity. In this case a high
order even difference of some quantity is added separately to each equation, e.g. for the incom-
pressible equations: pressure for the continuity equation, u and v for the mnoment uni equations. For
the compressible equations one normally adds a density difference to the continuity equation. In
such a. case it is obvious that the numerical scheme for the compressible equations canno1t converge
to the numerical scheme for the incompresssible equations. Furthermore, for low Mach number
flows the density is almost constant and s-) the higher order (difference of the densitv does not add
much of a viscosity to the continuity equation. As such, we conclude that the artificial visco* itv
for the compressible continuity equation should he based on pressure and riot doels|iv (at levtst for
low Mach numbers).

We shall examine the convergence a little more closely. By convergence of th, comi)prvssible
equations to the incompressible equations we are merely verifying what happens It) the difference
equations as the Mach number goes to zero. ['he convergence of the solution of the numiericaal
approximation to the preconditionined compressible equ ations to the nunerical sol itiim of the
incompressible equation is more difficult. However, we shall see that for the numerical solution the
convergence of the difference equation is nontrivial and depends on the preconditioning. For this
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purpose we shall only consider a central difference approximation together with a scalar artificial
viscosity for the nondimensionalized preconditioned inviscid equations.

For the incompressible equations in nonconservative form we consider the preconditioned systent

pt +/O2 (u. + v.,) = h' [(Ks p.rrz). + (K,2p,,,,),]
U

ýjt+ Ut + uu, + vu,, + px = V [(Klu..,). + (K2u~,,,).]11
[I h

V

Tp+ Vt + tlJ, -,-VVi,+ P3  = h3 ((K1 v.. v 1 ). + (KjvyS,)S,

where each space derivative is approximated by a central difference with spacing h in each direction.
The time derivatives are replaced by a multi-stage scheme. K1 , K2 are the largest eige"values of
the coefficient matrix in the respective direction. Since we do not expect shocks we only consider
a linear fourth difference artificial viscosity and not a nonlinear second difference 161, see the result
section for more details.

We next consider the same scheme foi the preconUliioned compressible inviscid equations, under
the assumption that the entropy, S, is constant so that p = p(p). It easier to analyze the convergence
for the nonsymmetric form since the pressure, p, convergences and not 12, see (10). For the
preconditioned continuity equation we have

Pt+ 2 [u, vp + pa 2 (U' +V' 1 = h 3 [Kp,) 1 + (K2pvS,1)Sy
a2

Since P, = a2 p_ p, a2pS, we can rewrite the system as

p, + 02 [(pu). + (pv),)] -h [(Kzpr 1,p,) + (K2pyyy)y]
u P
"Tjpt + Ut + UU, + vU, + p- h[((Kiu,,) 1 + (K2utyyy)y (12)p

V Py
Tpt + Vt + uV + vvY + P- h3 [(K1 V-:-)r + (K',2v,,)y]p

Comparing (11) with (12) it is obvious that if p -- 1 as M , 0 then (11) converges to (12).
It is crucial for both the time derivative and the artificial viscosity in the compressible continuity
equation to be pressure based rather than density based. The preconditioning of the momentum
equations is not important for this convergence.

For the incompressible equations in conservative form we multiply the first equation in (11) by
u and add it to the second and third equations. However, we do not change the artificial viscosity.
Then

Pt + , 'i + ) = h3 [( Kipix,) + (A K2pY,, )Y)
2u
"TPt + ut + (u2 + p). + (wt'X = h3 [(Kiu1c1 )1 + (Kh2 uy,),] (13)

2v
2vP _L Vt + (uvX. + (V 2 + pXy h3 [(K 1 V2.rX + (K2  X

For the compressible equations in conservative form we have two choices. One choice is to
multiply the first equation in (11) by u and the second by p and add the two. The spatial derivatives
are then in conservation form. However. the time derivative is of the form pit, rather than (pa)t
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and the artificial viscosity terms are not in conservation form. !fence, we instead choose to apply
the preconditioning directly to the conservative form. The resultant preconditioned coinpressible
equations in conservative form is

pt + 13 [(pu)X + (pv),)j = h' [(K'p 1 ). + (K2vpyy)y)
-upt + (pu)t + (pu2 + p). + (puv), = h' [(KI(pu)_-..). + (2' 2(pu)•y)yj (14)

v h3

•pj + (pv)t + (puv)x + (pv2 + p), = h' [(KI(pv), 1 .), + (K2(pvX,)yX 1j]

Note that (14) is not equivalent to (12).
In this case we again see that (14) converges formally to (13) as M - 0 and p -- 1. This is

because the pressure is used for the time derivative and the artificial viscosity in the continuity
equation.

This all applies to the isentropic equations. The compressible equations for nonisentropic flow
is more complicated and in fact there does not exist any proof of the convergence of the solution
of the compressible equations to the solution of the incompressible equations for this case.

6 Computational Results

We now present a calculation for two dimensional flow around an airfoil to demonstrate the previous
theory. As described above the discretization is based on the multistage time method coupled with
a central difference approximation as described in 16].

We solve the equation in conservation form based on a hybrid set of variables of those previously
considered.

Wt + P(Fý + Gv) = AD = (K1 Q ..:). + (K2Qyvp)y

(';
I puv I pvW +p

pH'u pH'v Ht

where p - p•, E' = cpp(T - T.) - (p - p.o) + ± and pH' = E' + p' We subtract the

constants to keep the quantities in scale, see (10).

G+h C;G + it,

where (;+h,,G

BI
13' (- h - -wher ii ,, T(;-u~±i2 ~ (+h 0 13

S• u mil l | I II ll I II II II



B2 = Blu + a-

B3 = Bj av

BRa(u + v)
B 4 = B2H + 02

We choose
S= max(u 2 + v2,0.9(u2 + vI)), a = 1

These equations are given for for the nondimensionalized variables. The nondinensionalization
affects the convergence, In some codes, p and p are fixed in the far field. This implies that the
speed of sound, a, is also bounded. As the Mach number goes to zero the pressure remains of order
I while the velocities go to zero. Alternatively, one can nondimensionalize so that the velocities
are of order 1 in the far field and then the pressure and speed of sound go to infinity, unless one
subtracts an appropriate constant,

A typical step of a Runge-Kutta approximation is

W(k) W() - OkAt [DF(k-1) + DvG(k•) - ADI,

where D, and Dy are spatial differencing operators, and AD represents the artificial dissipation
terms. The dissipation terms are a blending of second and fourth differences. That is,

where

D2 V i+L(4() A,, j

D4Q = Va: [Ai+l~j 4 3) AzVrAx]Q~

and A, V., are the standard forward and backward difference operators respectively associated
with the x direction. The variable scaling factor A is chosen as

AiLj= 1 -i + (A~X41432 2

where AX and A, are proportional to the largest eigenvalues of the matrices A and B. For genei alized
coordinates x and y are replaced by 1, respectively. This spectral radius is now a function of the
preconditioning. Hence,

= p(P A) Ay = p(PB)

The coefficients c(2) and (') are adapted to the flow and are defined as follows:
•(2) = (•
f+ j+ 6-() max(v,_.1 ,i, v,,j, vjj+j, vj+ 2,j),

i 2 -1

pi+,j- 2pij + Pi-i,3

'14 pi+•,j + 2p,,, + p_-i,'

( =4 max [ r.(s4) - (2
14[0 ( -:+j]
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